

Technology supporting formative assessment -

A digital tool for formative self-assessment

Hamburg, 29th July 2016 Hana Ruchniewicz 1

(www.wwolt.com)

Aim

BUT:

- active involvement of students is a key aspect of formative assessment
- investigating their (mis-)conceptions helps students to:
 - * gain sensitivity for their strengths and weaknesses
 - * use metacognitive strategies
 - * adopt responsibility for their own learning process

Aim: Develop a digital tool that allows students to become assessors themselves!

(Black & Wiliam 2009, Wiliam & Thompson 2007, Heritage 2007)

Hamburg, 29th July 2016

Hana Ruchniewicz

2

What to expect?

- Context: EU-Project FaSMEd
- Theoretical Background & Research
- Digital Self-Assessment Tool

Context

FaSMEd

= Raising Achievement through <u>Formative Assessment</u> in <u>Science and Mathematics Education</u>

- Introduction and investigation of technology enhanced formative assessment practices
- · design-based research
- 2014 2016
- 9 partners in 8 countries: FR, IE, IT, NL, NO, UK, ZA, DE

Final Toolkit will be available 12/16: www.fasmed.eu

online learning communities

quick polls

connected classroom

Hamburg, 29th July 2016 Hana Ruchniewicz

Theoretical Background

Formative Assessment (FA)

"Assessment can be considered formative only if it results in action by the teacher and students to enhance student learning."

(Bell & Cowie 2001, p.539)

Theoretical Background

Conceptualizing formative assessment

Wiliam & Thompson 2007 conceptualize FA in 5 key strategies:

	Where the learner is going	Where the learner is right now	How to get there
Teacher	1 Clarifying learning intentions and criteria for success	2 Engineering effective class- room discussions and other learning tasks that elicit evidence of student understanding	3 Providing feedback that moves learners forward
Peer	Understanding and sharing learning intentions and criteria for success	4 Activating students as instructional resources for one another	
Learner	Understanding learning intentions and criteria for success	5 Activating students as the owners of their own learning	

(Black & Wiliam 2009, Wiliam & Thompson 2007)

Hamburg, 29th July 2016 Hana Ruchniewicz 7

Theoretical Background

Conceptualizing formative assessment - FaSMEd framework

Theoretical Background

The concept of functions

Transformation of representations:

(Barzel 2009, Duval 2002)

Mental mathematical representations of functions ("Grundvorstellungen"):

mapping

The function maps one value of the independent quantity to exactly one value of the dependent quantity.

static local view

covariation

The function describes the change of two quantities with each other.

dynamic regional view

object

The function as a whole describes a new object.

structural global view

(Blum 1998, Dubinsky & Harel 1992, Tall 1996, Vollrath 1989, Vom Hofe & Blum 2016)

Typical misconceptions: • Graph as a picture

- Swap axes

(following Busch 2015, Clement 1985, Hadjidemetriou & Williams 2002, Leinhardt et al. 1990)

Hamburg, 29th July 2016

Hana Ruchniewicz

Research

Methodology:

- · Design-based research
- Case studies: task based interviews & class trials

- * Pilot: pen-&-paper version: 11 students, grade 8 (2 schools)
- * Pre-run: digital version: 18 students, grade 10
- * Cases (Dec 15): 2 students + classes, grade 10 (2 schools)
- * Cases (May 16): 2 university students (2nd semester)

Hypothesis:

A digital tool with a hyperlink structure based on typical misconceptions can support students' formative self-assessment.

Tool Design

Open assessment task "Test" 🔍

Hamburg, 29th July 2016 Hana Ruchniewicz 11

Tool Design

Check 🗸 🗶

Tool Design

Structure

Hamburg, 29th July 2016 Hana Ruchniewicz 13

Digital self-assessment tool

Structure

Digital self-assessment tool

Hamburg, 29th July 2016 Hana Ruchniewicz 15

Digital self-assessment tool

Task types

- 1. Graphing
- 2. Matching
- 3. Selecting
- 4. Open ansv

First Results of Case Studies

We can reconstruct processes of FA as students are able to:

- identify mistakes based on the check (S1)
- identify correct aspects of their work (S2)
- · decide to take further steps in their learning
- reflect upon their work
- · formulate self-feedback

Reads the *Info* concerning the same check-point.

"Oh, that is correct as well, because I did it the same way."

Hamburg, 29th July 2016 Hana Ruchniewicz 17

First Results of Case Studies

We can reconstruct processes of FA as students are able to:

- · identify mistakes based on the check
- identify correct aspects of their work
- decide to take further steps in their learning
- · reflect upon their work
- formulate self-feedback

Hints for students in the role of the assessor

These FA processes can be characterized:

Self-assessment is difficult for students:

- expect feedback from tool or teacher
- don't identify all of their mistakes
- don't overcome all of their mistakes
- need for instruction & training
- need for enhancement of tool
- need for deeper analysis of learning processes

Discussion

hana.ruchniewicz@uni-due.de

Hamburg, 29th July 2016 Hana Ruchniewicz 19

References

www.fasmed.eu

- Barzel, B. (2009). Mathematik mit allen Sinnen erfahren auch in der Sekundarstufe! In: Leuders, T., Hefendehl-Hebeker, L. & Weigand, H.-G. (Eds.): *Mathematische Momente*. Berlin: Cornelsen.
- Bell, B., & Cowie, B. (2001). The characteristics of formative assessment in science education. *Science Education*, 85(5), 536-553.
- Bernholt, S., Rönnebeck, S., Ropohl, M., Köller, O., & Parchmann, I. (2013). Report on current state of the art in formative and summative assessment in IBE in STM Part I. ASSIST-ME Report Series No. 1.
- Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. *Educational Assessment, Evaluation and Accountability*, 21(1), 5-31.
- Blum, W. (1998). On the Role of ,Grundvorstellungen' for reality-related Proofs-Examples and Reflections.
 Mathematical Modeling-Teaching and Assessment in a Technology-Rich World, Horwood, Chichester, 63-74.
- Dubinsky, E., & Harel, G. (1992). The concept of function: Aspects of epistemology and pedagogy.
 Mathematical Association of America.
- Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of Mathematics. *Mediterranean Journal for Research in Mathematics Education*, 1(2), 1-16.
- Kleine, M., Jordan, A., & Harvey, E. (2005). With a focus on ,Grundvorstellungen'Part 1: a theoretical integration into current concepts. *ZDM*, 37(3), 226-233.
- Vollrath, H.-J. (1989). Funktionales Denken. Journal für Mathematikdidaktik, 10(1), 3-37.
- Wiliam, D., & Thompson, M. (2007). Integrating assessment with learning: what will it take to make it work? In C. A. Dwyer (Ed.), *The Future of Assessment: Shaping Teaching and Learning* (pp. 53-82). Yahweh, NJ:Erlbaum.